Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 227: 113385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270904

RESUMO

The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.


Assuntos
Cosmecêuticos , Cosméticos , Nanopartículas , Cosmecêuticos/química , Cosméticos/química , Preparações Farmacêuticas , Anti-Inflamatórios , Nanopartículas/química
2.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431889

RESUMO

Seaweeds are macroscopic, multicellular, eukaryotic and photosynthetic organisms, and are a source of chemical diversity with powerful biological activities for diversified industrial applications including cosmeceuticals. Red seaweeds (Rhodophyta) are good sources of Mycosporine-like amino acids (MAA) for photoprotectant and antiphotoaging compounds. In addition, Rhodophyta are also good sources for hydrogel compounds that are used widely in the food, pharmaceutical and cosmeceutical industries as gelling agents, moisturizers or for their antiphotoaging effects. Our survey and ongoing studies revealed that the biodiversity of Indonesian Rhodophyta is rich and is a treasure trove for cosmeceutical agents including MAA and hydrogels. This study delivers valuable information for identifying potential red seaweeds in screening and searching for cosmeceutical agents.


Assuntos
Cosmecêuticos , Rodófitas , Alga Marinha , Cosmecêuticos/farmacologia , Cosmecêuticos/química , Hidrogéis , Alga Marinha/química , Aminoácidos
3.
Molecules ; 27(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35209043

RESUMO

(1) Background: Acne is a widespread skin disease, especially among adolescents. Following the COVID-19 pandemic and the use of masks, the problem has been affecting a greater number of people, and the attention of the skin care beauty routine cosmetics has been focused on the "Maskne", caused by the sebum excretion rate (SER) that stimulates microbial proliferation. (2) Methods: the present study was focused on the rheological characterization and quality assurance of the preservative system of an anti-acne serum. The biological effectiveness (cytotoxicity-skin and eye irritation-antimicrobial, biofilm eradication and anti-inflammatory activity) was evaluated in a monolayer cell line of keratinocytes (HaCaT) and on 3D models (reconstructed human epidermis, RHE and human reconstructed corneal epithelium, HCE). The Cutibacterium acnes, as the most relevant acne-inducing bacterium, is chosen as a pro-inflammatory stimulus and to evaluate the antimicrobial activity of the serum. (3) Results and Conclusions: Rheology allows to simulate serum behavior at rest, extrusion and application, so the serum could be defined as having a solid-like behavior and being pseudoplastic. The preservative system is in compliance with the criteria of the reference standard. Biological effectiveness evaluation shows non-cytotoxic and irritant behavior with a good antimicrobial and anti-inflammatory activity of the formulation, supporting the effectiveness of the serum for acne-prone skin treatment.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos , Biofilmes/efeitos dos fármacos , COVID-19 , Cosmecêuticos , Pandemias , Propionibacteriaceae/fisiologia , SARS-CoV-2 , Acne Vulgar/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Transformada , Cosmecêuticos/química , Cosmecêuticos/farmacologia , Humanos
4.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164116

RESUMO

The present work was performed to investigate the phenolic composition of P. lentiscus L. distilled leaves (PDL) and examine its potential against certain key enzymes related to skin aging. High-pressure liquid chromatography coupled to mass spectrometry (HPLC-MS) and various separation procedures combined with nuclear magnetic resonance (NMR) and MS analysis were performed to isolate and identify compounds present in the ethyl acetate extract (EAE) of PDL. A high amount of flavonol glycoside was detected in EAE. Indeed, quercetin-3-O-rhamnoside (FC), myricetin-3-O-rhamnoside (FM2), and kaempferol-3-O-rhamnoside (FB2) were isolated from EAE, and are present in high quantities of 10.47 ± 0.26, 12.17 ± 0.74, and 4.53 ± 0.59 mg/g dry weight, respectively. A transdermal diffusion study was carried out to determine the EAE-molecules that may transmit the cutaneous barrier and showed that FM2 transmits the membrane barrier with a high amount followed by FC. EAE, FM2, and FC were tested against tyrosinase and elastase enzymes. Moreover, intracellular tyrosinase inhibition and cytotoxicity on skin melanoma cells (B16) were evaluated. The results indicated that EAE, FC, and FM2 have important inhibitory activities compared to the well-known standards, at non-cytotoxic concentrations. Therefore, they could be excellent agents for treating skin pigmentation and elasticity problems.


Assuntos
Cosmecêuticos , Inibidores Enzimáticos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Elastase Pancreática/antagonistas & inibidores , Compostos Fitoquímicos , Pistacia/química , Folhas de Planta/química , Absorção Cutânea/efeitos dos fármacos , Animais , Cosmecêuticos/química , Cosmecêuticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Melanoma Experimental , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Elastase Pancreática/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
5.
J Cosmet Dermatol ; 21(4): 1407-1418, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34129742

RESUMO

BACKGROUND: Essential oils have great interest among the increasing demand for herbal cosmetics in the market. They are natural sources of biologically active ingredients due to the wide application of such compounds as well as their particular chemical composition. Several researches have evaluated the effectiveness of these bioactive ingredients for use in cosmeceuticals, mainly in both hair scalp and shaft hair damage repair. Thus, the amounts and their associations define the properties of these compositions with interest for hair cosmetic use, such as antioxidant, inflammatory, and antimicrobial activities. Because they are complex compounds, their actions on the skin, hair scalp, and shaft are not yet fully understood. AIMS: The purpose of this review is to highlight the relevant researches and findings on essential oils in hair care. METHODS: In order to achieve this objective, the present work comprises an updated bibliographic review related to essential oils used in hair care. RESULTS: It was possible to observe that cosmeceuticals containing essential oils applied to the scalp are preferable for topical activity. Also, it was noticed that there are few reports regarding their use in hair shaft. However, it was found that some oils are used to intensify the brightness and fix the hair color. CONCLUSIONS: This work demonstrated that the use of essential oils in both cosmetic products (industrial application) and those associated with oils carriers (as individual protocols) may lead to satisfactory results in the treatment of some scalp dysfunctions.


Assuntos
Cosmecêuticos , Cosméticos , Óleos Voláteis , Cosmecêuticos/química , Cosméticos/química , Cabelo , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Pele
6.
Mar Drugs ; 19(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940661

RESUMO

A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/química , Cosmecêuticos/química , Extratos Vegetais/farmacologia , Alga Marinha , Antioxidantes/química , Organismos Aquáticos , Humanos , Islândia , Extratos Vegetais/química
7.
Molecules ; 26(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34500687

RESUMO

The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.


Assuntos
Cosméticos/química , Administração Tópica , Cosmecêuticos/química , Portugal , Vitis
8.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500745

RESUMO

Amongst the countless marine organisms, seaweeds are considered as one of the richest sources of biologically active ingredients having powerful biological activities. Seaweeds or marine macroalgae are macroscopic multicellular eukaryotic photosynthetic organisms and have the potential to produce a large number of valuable compounds, such as proteins, carbohydrates, fatty acids, amino acids, phenolic compounds, pigments, etc. Since it is a prominent source of bioactive constituents, it finds diversified industrial applications viz food and dairy, pharmaceuticals, medicinal, cosmeceutical, nutraceutical, etc. Moreover, seaweed-based cosmetic products are risen up in their demands by the consumers, as they see them as a promising alternative to synthetic cosmetics. Normally it contains purified biologically active compounds or extracts with several compounds. Several seaweed ingredients that are useful in cosmeceuticals are known to be effective alternatives with significant benefits. Many seaweeds' species demonstrated skin beneficial activities, such as antioxidant, anti-melanogenesis, antiaging, photoprotection, anti-wrinkle, moisturizer, antioxidant, anti-inflammatory, anticancer and antioxidant properties, as well as certain antimicrobial activities, such as antibacterial, antifungal and antiviral activities. This review presents applications of bioactive molecules derived from marine algae as a potential substitute for its current applications in the cosmetic industry. The biological activities of carbohydrates, proteins, phenolic compounds and pigments are discussed as safe sources of ingredients for the consumer and cosmetic industry.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Cosmecêuticos/farmacologia , Cosméticos/química , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antineoplásicos/química , Antioxidantes/química , Cosmecêuticos/química , Humanos , Alga Marinha/química
9.
Mar Drugs ; 19(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436283

RESUMO

In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.


Assuntos
Cosmecêuticos/química , Poríferos , Animais , Humanos , Fitoterapia , Simbiose
10.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361586

RESUMO

This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.


Assuntos
Cosmecêuticos , Cosméticos , Ácido Hialurônico , Envelhecimento da Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Cosmecêuticos/química , Cosmecêuticos/uso terapêutico , Cosméticos/química , Cosméticos/uso terapêutico , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico
11.
Mol Divers ; 25(3): 1425-1438, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34258685

RESUMO

Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Computational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and the mechanistic studies of nutraceutical, cosmeceutical and functional foods.


Assuntos
Quimioinformática/métodos , Cosmecêuticos/química , Suplementos Nutricionais/análise , Alimento Funcional/análise , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Algoritmos , Cosmecêuticos/farmacologia , Bases de Dados de Compostos Químicos , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
12.
Molecules ; 26(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063713

RESUMO

Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.


Assuntos
Quitosana/química , Cosmecêuticos/química , Embalagem de Alimentos , Têxteis , Aminas/química , Animais , Antibacterianos/química , Anti-Infecciosos/química , Antioxidantes/química , Cristalização , Filmes Comestíveis , Humanos , Nanofibras/química , Nanopartículas/química , Polímeros , Regeneração , Pele/patologia , Pele Artificial , Solubilidade , Engenharia Tecidual , Cicatrização
13.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799441

RESUMO

Medicago lupulina is an ancient edible plant from the Fabaceae family. In this work, two eco-friendly methods for extraction of bioactive phenolics from M. lupulina were developed using mixtures of water with two non-toxic, skin- and environmentally-friendly polyol solvents: glycerol and polypropylene glycol. Ultrasound-assisted extractions were optimized using a Box-Behnken design. The independent variables were the concentration of organic solvent in water (X1), extraction temperature (X2) and time (X3), while the response was phenolic content. The optimum conditions for extraction of polyphenols were (X1, X2, X3): (45%, 70 °C, 60 min) and (10%, 80 °C, 60 min) for glycerol and polypropylene glycol extraction, respectively. The extracts prepared at optimum conditions were rich in phenolic compounds, mainly derivatives of apigenin, kaempferol, luteolin, quercetin, caffeic and ferulic acid, as well as coumestrol. Their cosmeceutical and antidiabetic activity was tested. Both extracts demonstrated notable antioxidant, anti-lipoxygenase and anti-α-amylase activity. In addition to those activities, the glycerol extract efficiently inhibited protein coagulation, elastase and α-glucosidase activity. Glycerol present in the extract displayed enzyme-inhibiting activity in several assays and supported the action of the bioactive constituents. Thus, the optimized glycerol extract is a desirable candidate for direct incorporation in antidiabetic food supplements and cosmeceutical products.


Assuntos
Antioxidantes/química , Cosmecêuticos/química , Inibidores de Glicosídeo Hidrolases/química , Medicago/química , Fenóis/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Antioxidantes/farmacologia , Cosmecêuticos/farmacologia , Glicerol/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polímeros/química , Polifenóis/química , Propilenoglicóis/química , Solventes/química
14.
J Sci Food Agric ; 101(11): 4444-4455, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33608900

RESUMO

Marine algae are regarded as a promising nutrients resource in future as they can be sustainably cultured without land and high investment. These macroalgae are now widely processed into food and beverages, fertilizers and animal feed. Furthermore, bioactive compounds such as polysaccharides and polyphenols in seaweeds have proven to have antibacterial, antiviral and antifungal properties that can be utilized in cosmeceuticals, nutraceuticals and pharmaceuticals. As a key procedure in seaweed production, the postharvest process not only requires more laboured and energy but also affect the quality of the final product significantly. This article reviewed all current postharvest processes and technologies of seaweed and addressed potential postharvest strategies for seaweed production. © 2021 Society of Chemical Industry.


Assuntos
Extratos Vegetais/química , Alga Marinha/química , Animais , Cosmecêuticos/química , Suplementos Nutricionais/análise , Manipulação de Alimentos , Humanos , Polifenóis/análise , Polissacarídeos/análise
15.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514008

RESUMO

Fragrance is an integral part of cosmetic products and is often regarded as an overriding factor in the selection of cosmetics among consumers. Fragrances also play a considerable role in masking undesirable smells arising from fatty acids, oils and surfactants that are commonly used in cosmetic formulations. Essential oils are vital assets in the cosmetic industry, as along with imparting pleasant aromas in different products, they are able to act as preservatives and active agents and, simultaneously, offer various benefits to the skin. Moreover, the stimulating demand for natural ingredients has contributed massively to a renewed interest in cosmetic and wellness industries in plant derivatives, especially essential oils. This has led popular cosmetic companies to endorse natural fragrances and opt for minimally processed natural ingredients, given the potentially adverse health risks associated with artificial fragrance chemicals, which are major elements of cosmetics. Among the high-valued essential oils used as fragrances are citrus, lavender, eucalyptus, tea tree and other floral oils, among others, while linalool, geraniol, limonene, citronellol, and citral are much-appreciated fragrance components used in different cosmetics. Thus, this review aimed to highlight the enormous versatility of essential oils as significant sources of natural fragrances in cosmetics and cosmeceuticals. Moreover, a special focus will be laid on the different aspects related to essential oils such as their sources, market demand, chemistry, fragrance classification, aroma profile, authenticity and safety.


Assuntos
Produtos Biológicos/química , Cosmecêuticos/química , Cosméticos/química , Óleos Voláteis/química , Animais , Humanos , Odorantes/análise
16.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467522

RESUMO

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Aminoácidos/química , Anti-Infecciosos/química , Antivirais/química , Simulação por Computador , Cosmecêuticos/química , Cosmecêuticos/uso terapêutico , Suplementos Nutricionais , Técnicas de Transferência de Genes , Humanos , Lactoferrina/química , Bicamadas Lipídicas , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Peptídeos/administração & dosagem , Células-Tronco , Vacinas de Subunidades/química , Vacinas de Subunidades/farmacologia , Tratamento Farmacológico da COVID-19
17.
Pharm Dev Technol ; 25(9): 1139-1149, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32729753

RESUMO

The objective of the study was to explore the potential of a novel nicotinamide extrudate as an anti-aging platform compared to the conventional gel. Nicotinamide extrudates were prepared by hot melt extrusion and characterized pharmaceutically for their thermal behavior, mositure uptake, skin adhesion, and deposition in different skin layers. The pharmacological potential of the extrudates was explored in terms of induction of skin amino acids, cellular energy estimation, 8-hydroxy-2-deoxyguanosine content, Nitrate + nitrite content and histological chacaterization of collagen area percent. Results revealed that the extrusion technique managed to amorphize nicotinamide and enhance its skin deposition (46%) compared to the gel form which only showed about 10% deposition, owing to the mucoadhesive nature of the former. Extrudates were also found superior to the gel form as demonstrated by the increased amino acids level (glycine, proline, hydroxyproline), increased cellular energy, decreased oxidative stress and increased collagen formation. Nictotinamide extrudates were proven to be a scalable promising anti-aging platform which are worthy of entering the cosmeceutical market as products.


Assuntos
Envelhecimento/efeitos dos fármacos , Colágeno/farmacologia , Cosmecêuticos/farmacologia , Géis/farmacologia , Niacinamida/farmacologia , Envelhecimento/metabolismo , Aminoácidos/metabolismo , Animais , Colágeno/química , Cosmecêuticos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Feminino , Géis/química , Masculino , Niacinamida/química , Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/metabolismo , Solubilidade/efeitos dos fármacos
18.
Mar Drugs ; 18(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575468

RESUMO

Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.


Assuntos
Produtos Biológicos/farmacologia , Cosmecêuticos/farmacologia , Alga Marinha/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Cosmecêuticos/química , Cosmecêuticos/isolamento & purificação , Cosmecêuticos/uso terapêutico , Exantema/tratamento farmacológico , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Alga Marinha/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Preparações Clareadoras de Pele/química , Preparações Clareadoras de Pele/isolamento & purificação , Preparações Clareadoras de Pele/farmacologia , Preparações Clareadoras de Pele/uso terapêutico , Pigmentação da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
19.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486036

RESUMO

The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Cosmecêuticos/química , Cosméticos/química , Suplementos Nutricionais , Envelhecimento da Pele/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Humanos , Indóis/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Fenóis/metabolismo , Pele/efeitos dos fármacos , Preparações Clareadoras de Pele , Cicatrização
20.
Molecules ; 25(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344812

RESUMO

Cosmeceuticals are hybrids between cosmetics and pharmaceuticals which are being designed for a dual purpose: (1) To provide desired esthetical effects and (2) simultaneously treat dermatological conditions. The increased demand for natural remedies and the trends to use natural and safe ingredients resulted in intensive cultivation of medicinal plants. However, in many cases the whole process of plant cultivation, complex extraction procedure, and purification of the targeted molecules are not economically feasible. Therefore, the desired production of natural cosmetic products in sustainable and controllable fashion in the last years led to the intensive utilization of plant cell culture technology. The present review aims to highlight examples of biosynthesis of active ingredients derived through plant in vitro systems with potential cosmeceutical application. The exploitation of different type of extracts used in a possible cosmeceutical formulation, as well as, their activity tested in in vitro/in vivo models is thoroughly discussed. Furthermore, opportunities to manipulate the biosynthetic pathway, hence engineering the biosynthesis of some secondary metabolites, such as anthocyanins, have been highlighted.


Assuntos
Produtos Biológicos/química , Cosmecêuticos/química , Engenharia Metabólica , Plantas/química , Animais , Antocianinas/química , Antocianinas/metabolismo , Cosméticos , Regulação da Expressão Gênica de Plantas , Humanos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Extratos Vegetais/química , Plantas/genética , Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...